
[Giri, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1524-1535]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY
Effectiveness of Software Development Process Using Programmer Ranker

Algorithm in Pair Programming
Manisha Giri*1, Saket Soni2

*1,2Department of Computer Science Engineering Chhatrapati Shivaji Institute of Technology, Durg India
manisha.giri1@gmail.com

Abstract
Pair programming is a style of programming in which two programmers work side-by-side at one

computer, continuously collaborating on the same design, algorithm, code, or test. In industry, the practice of pair
programming has been shown to improve product quality, improve team spirit, aid in knowledge management, and
reduce product risk. In software industry, pair programming also improves associate’s morale, helps associates to be
more successful, and improves associates retention in an information technology major. Project efficiency of pairs in
program design and implementation tasks is identified by using pair programming concept. Pair programming
involves two developers simultaneously collaborating with each other on the same programming task to design and
code a solution. Programming aptitude tests (PATs) have been shown to correlate with programming performance.
In this paper we will measure time productivity using pair programming, in two important ways: One is elapsed time
to complete the task and the other is the total effort/time of the programmers completing the task. Using Programmer
Ranker Algorithm (PRA) we will generate pair and Rank will be provided to each pair of Junior, Senior of industry.
After providing rank the best pair can be allocated to Embedded Software project type, Semi detached Software
project type and Organic Software project type respectively.

Keywords: Pair programming, PAT, Collaborative programming, Team building, PRA.

Introduction
 Each day, software applications grow larger
and more complicated; perhaps, then, it is best for
complexity of these application to be tacked by two
humans at a time. Much of the increase in interest in
Pair Programming is due to introduction of Extreme
Programming (XP) [1].Pair programming is a
software practice that involves a pair of programmers
simultaneously collaborating with each other on the
same programming effort [2], [3], [4], [5], [6]. One
programmer controls the keyboard and implements
the program. The other programmer watches,
identifies defects, considers the direction of the work,
and communicates with the customer/client. Sitting
side by side at one computer, two colleagues
collaborate on solving the problem, designing the
algorithm and coding. In pair work, both partners
actually perform each activity together in
collaborative manner, making it possible to create
and continuously review what is being created. Pairs
regularly switch the driver and navigator roles and
rotate their partners with other teams: This practice is
thought to facilitate skills transfer and job rotation
[7].

Many different variations of pair

programming experiments have been reported but the
results of these studies vary substantially (Williams
2000; Flor 1991; Nosek 1998; Nawrocki 2001;
Hulkko 2005; Arisholm 2007; Ciolkowski 2002;
Bellini 2005; Lui 2006; Lui 2008). This is mainly due
to several consistent variables, which are difficult to
control. Previous studies in pair programming have
only addressed the basic understanding of the
productivity of pairs and they have not addressed the
variation in productivity between pairs of varying
skills and experience, such as between novice–novice
and expert–expert.

Several previous controlled experiments
have validated the following quantitative benefits of
pair programming over individual programming.

Significant improvements in functional
correctness.
1. Various other measures of quality of the

programs being developed.
2. Reduced duration (a measure of time to

market), with only minor additional overhead in
terms of total programmer hours (a measure of cost
or effort)

[Giri, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1524-1535]

3. Reduced the elapsed time and produced
better software quality.

In this paper we have proposed Programmer
Ranker Algorithm (PRA) for evaluating
Programmer’s Effort in Context of Pair Programming
which will produced the best pairs from the
individuals and then provide the ranking to the
selected pairs by using Halstead Complexity Metrics.
PRA is fundamentally different from the other
researches in PP as it is using Programming Aptitude
Test (PAT) and Software Metrics, the aim is to detect
more defects and adjust implementation strategy just
when code is written. PRA will contributes towards
quality improvement, reliable and bug free software
development.

The remainder of this paper is organized as
follows: Section 2 provides a brief history of the use
of pair programming. The section begins with a
discussion with a classic Horse-Trading Problem
(Mayer’s Problem) done by Kim Man Lui. This
exercise will prove that collaborative problem
solving makes a difference when comparing pairs and
individuals. In section 3 we will address the use of
Programming Aptitude Tests (PAT) to evaluate pairs
in program design. Section 4 defines a new
measurement of time productivity. In section 5 we
will discuss the Halstead Program Complexity
Metrics which is being used for measuring
programming skills of the pairs and provide final
ranking. Section 6 identifies the problem in the
existing system. Section 7 explains our approach of
pair programming that is Programmer Ranker
Algorithm (PRA). Section 8 provides the pair
programming results. The final section provides
concluding remarks and points some possible
directions for future research.

Background

In 1998, Nosek conducted an experiment
with five pairs and five individual professionals to
solving a challenging problem. They were asked to
write an UNIX script that performed a database
consistency check. The programmers were well
versed in UNIX script but had not performed that
kind of task before. The controlled experiment
showed that Pair Programming shortened the elapsed
time and produced better software quality than
individual programming. This creates evidence that
collaboration improves the problem-solving process
and produces more efficient code.

In an academic environment, the most cited
study is probably that described in [8] in which 13
university students worked individually on a project
and 28 choose to work in pairs. The finding showed
that the code produced by the passed more automated

test over four different programming exercises. This
resulted that pair programming in software
development yields better product in less time. The
programmer feels happier, more confident.

Previous studies in pair programming have
only addressed the basic understanding of the
productivity of pairs and they have not addressed the
variation in productivity between pairs of varying
skills and experience, such as between novice–novice
and expert–expert. In this paper we have proposed a
quantitative method to develop a model for software
development using Pair Programming and assessing
effectiveness, variation in effectiveness between pairs
of varying skills with respect to the coding phase of
the software development.
Classic Horse Trading Problem: Understanding
Pair VS Solo

A well-known problem called the Horse-
Trading Problem by Maier can help us explore
collaborative problem solving. We have replicated
this experiment; the following summarizes the
preparation and results.

The Horse-Trading Problem is a simple
question as seen in Figure1.

A man buys a horse for $60 and then sells it for

$70. Later he buys the horse back for $80 and sells it
again for $90. So, how much did the man earn?

Figure.1 Classic Horse-Trading Problem

The problem was part of a class activity
intended to show the students the validity of
collaborative problem solving. This experiment was
carried out on students for learning purposes;
therefore the experiment was not strictly monitored.
Students were asked to solve the problem either alone
or in pairs; they were also allowed to form their own
groups with as many members as they referred (see
Table 1).

Group No 1 2 3 4 5 6

Members/Group 10 10 4 2 3 1

Table 1: Group Distribution

Afterward, each group was handed a piece
of paper with the problem printed on it. Groups were
allowed to refer back to the question as needed
throughout the problem solving process, and were
able to use as much time as necessary to solve the
problem. Finally, each group wrote down their
respective answers and submitted it.

Most of the groups were able to work out a
solution in around three minutes. The time needed to

[Giri, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1524-1535]

determine a solution is not considered, as the
difference in solution times may be large in terms of
percentage, but overall the time is not significant as
these differences are too short. More importantly,
though, not all groups were able to correctly solve the
problem by calculating the amount the man actually
earns.
Result
 The observations revealed significant
improvements in the average percentage of accuracy
when comparing a group with only one member to a
group with more than three members. Groups 1 and 2
offer a strong statistical basis as evidence and such
results are consistent with sociological research
findings (Maier 1969) (see Figure 2). However, when
the group size consists of five or more, the correction
percentage dropped slightly. This result could be
related to ergonomics as the classroom seats arranged
in fixed rows. A group of two may be able to
communicate side-by-side effectively, but for groups
larger than three a round table is needed to facilitate
communication and collaboration.

Relation between Programming Test and
Performance

Programming aptitude tests (PATs) have
been shown to be related to programming task related
capabilities [26], [27], [28], [29], [30], [31], [32],
[33], [34], [35], [36], [37]. The IBM Programmer
Aptitude Test (IBM-PAT) is the best known test for
measuring programming aptitude [34]. IBM-PAT
does not contain tests for knowledge of specific
language commands. The test includes a number of
reasoning tasks: procedural problems, classification
knowledge, deduction questions (also called serial
questions), and mathematical reasoning.

PAT scores have been used by some
organizations to prescreen programmer candidates for
job interviews. McNamara and Hughes [27]
conducted research involving 57 professional
programmers, with an average age of 25 years, who

have 15 months of relevant work experience. The
study attempted to relate PAT scores with the
following:

 1. Actual job performance as a programmer,
 2. Future programming potential,
 3. System-analyst potential, and
 4. Management potential, as graded by their

supervisors.
Correlations of 0.40 ðp < 0:01Þ, 0.41 ðp <

0:01Þ, and 0.46 ðp < 0:01Þ were obtained between
PAT and 1, 2, 3, respectively. For 4, it was 0.30 ðp <
0:05Þ. The correlation between PAT scores and
system-analyst potential is found to be significantly
higher than the others.

In addition to studies of PATs with
professional programmers [26], [27], [28], [29], [30],
[31], [32], studies of PATs with students have also
been conducted [33], [34], [35], [36], [37]. Tukiainen
and Mo¨nkko¨nen [36] have reexamined PATs to
predict the abilities of student programmers. They
used a PAT that was designed by Huoman in 1989
[37].

In a study in 2006, 30 computer science
students were tested and results showed that scores of
playing the Mastermind game, which also ignores
computer language skills, correlated with in-class
programming test scores at the 0.6 level [38].

In summary, most studies show that PAT
scores are correlated with job performance in general
but not necessarily with program design performance
in particular. Most PATs do not require those being
tested to have specific knowledge of any
programming language or development environment.
However, PATs measure performance on a number of
reasoning tasks critically important to program
design: procedural problems, classification
knowledge, deduction questions, and mathematical
reasoning.

Measuring Productivity

Basic COCOMO computes software
development effort (and cost) as a function of
program size. Program size is expressed in estimated
thousands of source lines of code (SLOC).
COCOMO applies to three classes of software
projects:
Organic projects - "small" teams with "good"
experience working with "less than rigid"
requirements.
Semi-detached projects - "medium" teams with
mixed experience working with a mix of rigid and
less than rigid requirements.
Embedded projects - developed within a set of
"tight" constraints. It is also combination of organic

[Giri, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1524-1535]

and semi-detached projects.(hardware, software,
operational, ...).
The basic COCOMO equations take the form:

Effort Applied (E) = ab (KLOC)bb [man-
months]
Development Time (D) = cb (Effort Applied)db
[months]
People required (P) = Effort Applied / Development
Time [count]

 where, KLOC is the estimated number of delivered
lines (expressed in thousands) of code for project.
 The coefficients ab, bb, cb and db are given in the
following table:

Table 2: Coefficients

From above table we can say that Embedded
Software project type require more effort as compare
to Semi-detached and Organic. Hence Embedded
Software project should be allotted to high ranked
pair.

 Lui and Chan proposed the same
COCOMO model in PP. Time productivity can be
measured in two important ways: One is elapsed time
to complete the task and the other is the total
effort/time of the programmers completing the task.
Both important measurements of time can be
incorporated in a single measurement, that is, the
Relative Effort Afforded by Pairs (REAP) [39]:

 = (finish time of pair)*2 - (finish Time of
Individual) / (finish Time of Individual) * 100

There are five cases for us to consider with REAP:
 1. REAP < 0,
 2. REAP = 0,
 3. REAP is between 0 and 100,
 4. REAP = 100, and
 5. REAP > 100.

When REAP is negative, the total time of
pair programmers is less than the time of the
individual programmer, that is, pairs are actually
more efficient than a single pair programmer and it is
less costly to use pair programmers than individual
programmers.

If REAP is zero, this is a break-even point,
where the total time of pair programming is the same
as individual programming, but pair programming
halves the elapsed time required for individual

programming. When REAP is greater than zero but is
less than 100 percent, pairs require more total man
hours to complete the task but are faster than
individual programmers, that is, the elapsed time to
complete is less for pairs than for individual
programmers. This can be useful when the critical
issue is time to market [4], [6]. As windows of
opportunity and product life cycles have been
shortening in recent years, premium pricing and
higher sales levels that can accrue to early-mover
companies can make it worthwhile for them to spend
more on short-term development costs [32]. Pair
programming provides an alternative to accelerate
software programming beyond dividing up
programming tasks. Two examples in this category
are 1) the Nosek [4] results that equate to a REAP of
46 percent and 2) the Williams [6] results that equate
to a REAP of 15 percent.

If REAP is around 100 percent, the elapsed
time for pair programmers is almost the same time as
in the individual programmer; therefore, pair
programming doubles the total man hours as
compared to individual programming. When REAP is
greater than 100 percent, then the elapsed time for
pair programming is longer than the time for an
individual programmer. REAP can also be used in
measurements for non programming related tasks.
For example, in a controlled non programming
experiment, Lazonder compared pairs of students
against single students in Web search tasks and the
REAP equates to 34.4 percent [33].

Halstead Complexity Metrics

Halstead complexity measures are software
metrics introduced by Maurice Howard Halstead [56]
as part of his treatise on establishing an empirical
science of software development. Halstead makes the
observation that metrics of the software should reflect
the implementation or expression of algorithms in
different languages, but be independent of their
execution on a specific platform. These metrics are
therefore computed statically from the code.
 Halstead's goal was to identify measurable
properties of software, and the relations between
them. This is similar to the identification of
measurable properties of matter (like the volume,
mass, and pressure of a gas) and the relationships
between them (such as the gas equation). Thus his
metrics are actually not just complexity metrics.
Calculation
For a given problem, Let:

 n1= the number of distinct operators
 n2= the number of distinct operands
 N1= the total number of operators
 N2= the total number of operands

Software project ab Bb Cb db
Organic 2.4 0.5 2.5 0.38
Semi-detached 3.0 1.12 2.5 0.35
Embedded 3.6 1.20 2.5 0.32

[Giri, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1524-1535]

From these numbers, several measures can be
calculated:
Program vocabulary: n = n1 +n2
Program length: N = N1 + N2
Calculated program length: N’ = n1 log2 n1 + n2
log2 n2
Volume: V = N log2 n
Difficulty: D = n1/2 * N2 / n2
Effort: E = D * V

The required Programming Time (T) for a program P
of effort E is defined as:
 T = E / S = [n1*N2*N *log2 n / 2*n2*S]
 where S is the Stroud number, defined as the number
of elementary discriminations performed by the
human brain per second. The S value for software
scientists is set to 18 [Hamer 1982]. The unit of
measurement of T is the second.
 In 1967, psychologist John M. Stroud suggested
that the human mind is capable of making a limited
number of mental discrimination per second (Stroud
Number), in the range of 5 to 20.
Number of delivered bugs : B = [E^(2/3) / 3000]or,
more recently, B = V / 3000 is accepted.
Halstead Metrics: Example
void sort(int*a, intn)
 inti, j, t;
 {
 if (n <2)
 return;
 for(i=0 ; i <n-1; i++)
 {
 for(j=i+1 ; j <n ; j++)
 {
 if(a[i] > a[j])
 {
 t=a[i];
 a[i] =a[j];
 a[j]=t;
 }
 }
 }
 }

Ignore the function definition.

Table 3: Count Operators and Operands

Table 4 Computed Halstead Metrics Values

Problem Identification

Each day, software applications grow larger
and more complicated; perhaps, then, it is best for
complexity of these application to be tacked by two
humans at a time. Much of the increase in interest in
Pair Programming is due to introduction of Extreme
Programming (XP) [1].Pair programming is a
software practice that involves a pair of programmers
simultaneously collaborating with each other on the
same programming effort [2], [3], [4], [5], [6].

Many different variations of pair
programming experiments have been reported but the
results of these studies vary substantially (Williams
2000; Flor 1991; Nosek 1998; Nawrocki 2001;
Hulkko 2005; Arisholm 2007; Ciolkowski 2002;
Bellini 2005; Lui 2006; Lui 2008). This is mainly due
to several consistent variables, which are difficult to
control. Previous studies in pair programming have
only addressed the basic understanding of the
productivity of pairs and they have not addressed the
variation in productivity between pairs of varying
skills and experience, such as between novice–novice
and expert–expert.

Much work has been carried out on
improving the efficiency of the pairs in Pair
Programming. However, all these works suffer from
finding efficient pairs. We aim to obtain an efficient
algorithm which will produced the best pairs from the
individuals and then provide the ranking to the
selected pairs by using Average REAP and Halstead
Complexity Metrics, the aim is to detect more defects
and adjust implementation strategy just when code is
written. PRA will contributes towards quality

Operators Count Operands Count
3 < 3 {
5 = 3 }
1 > 1 +
2 - 2 ++
9 ; 2 if
4 (1 int
4) 1 return
6 []

 1 0
 2 1
 1 2
 6 a
 8 i
 7 j
 3 n
 4 t

Program Vocabulary: 24 Program Length: 80
Calculated Program
Length : 89.64

Volume: 366.79

Difficulty: 36.42 Effort: 13358.49
Estimated Bug: 0.12 Programming Time:

0.0067

[Giri, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1524-1535]

improvement, reliable and bug free software
development.

Our Approach

In this work, we have proposed a
Programmer Ranker Algorithm (PRA) with Halstead
Complexity Software Metrics to develop a model for
improving the effectiveness of Software
Development Process in Pair Programming. PRA is
fundamentally different from all the previous
algorithms and researches. As PRA uses
Programming Aptitude Test (PAT) with Software
Metrics, the aim is to detect more defects and adjust
implementation strategy just when code is written.
We have applied PP in the coding phase of software
development. PP is not solely reserved to coding
phase but can be applied to other phase of the process
such as analysis and design.

As shown in the Figure 3, PRA algorithm
takes input of REAPs of successful pairs and
individuals and finds the ranking of pairs with respect
to an individual using PAT performance and also
finds pairs ranking by computing average reap and
Halstead Complexity Metrics considering technical
performance along with PAT performance.

Figure.3 Our Approach

Programmer Ranker Algorithm(PRA)
Pair programming involves two developers

simultaneously collaborating with each other on the
same programming task to design and code a
solution. Programming aptitude tests (PATs) have
been shown to correlate with programming
performance. In this paper we will measure time
productivity using pair programming, in two
important ways: One is elapsed time to complete the
task and the other is the total effort/time of the
programmers completing the task. Using Programmer
Ranker Algorithm (PRA) we will generate pair and
Rank will be provided to each pair of Junior, Senior
of industry using Halstead Program Complexity
Metrics considering PAT and PWT performance both.
After providing rank the best pair is allocated to
Embedded Software project type, Semi detached
Software project type and Organic Software project
type respectively.
 We have proposed Programmer Ranker
Algorithm (PRA), which improves the previous work
done in context of pair programming (PP). It provides
a quantitative method to find the best pairs from the
given individuals. In PRA, REAP will be calculated
considering elapsed time of successful individuals
and pairs in PAT and the best pairs and their rank will
be provided. The proposed method will be discussed
in the following sub-sections.
In the proposed PRA best pairs will be found from
the given list of individuals. But in the proposed
algorithm following assumptions are made.

• Make sure that every programmer fully
understands the concept of pair
programming before trying to apply it.

• Try to describe the expected goals with pair
programming before the work starts.

• Try to set up some kind of rules of how and
when to pair up (i.e on random basis or on
some domain expertise basis) before facing
PAT, what roles there are, and what each pair
member is expected to do.

• Let people work on their own if they feel
they need to.

In this paper we are pairing up the individuals for
PAT and PWT on random basis.
The process of finding best pairs and their ranking is
divided into following parts.

Programming Aptitude Test (PAT).
Programming Written Test (PWT).
Programmer Ranker Algorithm (PRA).
Halstead Complexity Metrics.

[Giri, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1524-1535]

Programming Aptitude Tests (PATs)
Programming aptitude tests (PATs) have

been shown to be related to programming task related
capabilities [26], [27], [28], [29], [30], [31], [32],
[33], [34], [35], [36], [37]. The IBM Programmer
Aptitude Test (IBM-PAT) is the best known test for
measuring programming aptitude [34]. IBM-PAT
does not contain tests for knowledge of specific
language commands. In this paper we are also using
PAT as a task to measure elapsed time of individuals
and pairs. It is compulsory for every individual and
pair to go through PAT. The pairs who have been
successful in PAT will face PWT. In our PAT there
will be different sets of questions which can be
assigned by admin (project manager) to different
individuals and pairs but the set should be same for a
particular process. The sets will have four sections-
Numerical, Reasoning, English and Technical. There
will be sectional as well as aggregate cut off. The
subjects (Individuals or Pairs) will have to clear the
both cut offs to be considered for PRA as input.
Programming Written Test (PWT)

The subjects (only pairs) who have been
successful in Programming Aptitude Test (PAT) will
go for PWT. PWT is used to assess the style of
coding of the subject (only Pairs). The programs of
the selected best pairs generated through PRA will
act as input for Halstead Program Complexity
Metrics and then estimated number of bugs and their
final ranking will be computed. In this paper we are
computing Halstead Metrics for C and C++ language
only.
Programmer Ranker Algorithm (PRA)

The PRA uses Relative Effort Afforded by
Pairs (REAP) for finding best pairs and their ranking.
We have proposed Programmer Ranker Algorithm in
two parts- PRA (a) and PRA (b).The step-by-step
procedure of PRA (a) and PRA (b) algorithm is
described as follows.

Algorithm 1: Programmer Ranker Algorithm (PRA) (a)

Procedure Gen_Pair ()
 //indiTime -> Finish Time of Individual
 //p1Time -> Pair-I Finish Time
 //p2Time -> Pair-II Finish Time
 //p3Time -> Pair-III Finish Time
1. REAP1 = (((p1Time * 2) - indiTime) /
indiTime) * 100;
2. REAP2 = (((p2Time * 2) - indiTime) /
indiTime) * 100;
3. REAP3 = (((p3Time * 2) - indiTime) /
indiTime) * 100;
4. if (REAP1 < REAP2)
 {
 if (REAP1 < REAP3)

 {
 "The Pair One is Best compare to the
others";
 }
 else
 {
 "The Pair three is Best compare to the
others";
 }
 }
 else if (REAP1 > REAP2)
 {
 if (REAP2 < REAP3)
 {
 "The Pair two is Best compare to the
others";
 }
 else
 {
 "The Pair three is Best compare to the
others";
 }
 }
 End Gen_Pair

Algorithm 2: Programmer Ranker Algorithm (PRA) (b)

1) I1, I2, I3...In ; //Individuals successful in PAT
 T1, T2, T3...Tn ; // Elapsed Time of Individuals in
PAT

2) P1, P2, P3....Pm ; // Pair successful in PAT and
have PWT
 S1, S2, S3...Sm ; // Elapsed Time of Pairs in PAT

3) Calculate REAP of a Pair with all individuals
 a) For P1
 R1,1 = [(2 * S1 – T1)/ T1] * 100 ;
 R1,2 = [(2 * S1 – T2)/ T2] * 100 ;
 R1,3 = [(2 * S1 – T3)/ T3] * 100 ;
 .
 .
 R1,n = [(2 * S1 – Tn)/ Tn] * 100 ;

b) For P2
 R2, 1 = [(2 * S2 – T1)/ T1] * 100;
 R2, 2 = [(2 * S2 – T2)/ T2] * 100;
 R2, 3 = [(2 * S2 – T3)/ T3] * 100;
 .

.
 R2, n = [(2 * S2 – Tn)/ Tn] * 100;
.
.

[Giri, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1524-1535]

. // similarly we will calculate REAP of other Pairs
with all Individuals
.
.
c) For Pm
 Rm, 1 = [(2 * Sm – T1)/ T1] * 100;
 Rm, 2 = [(2 * Sm – T2)/ T2] * 100;
 Rm, 3 = [(2 * Sm – T3)/ T3] * 100;
 .
 .
 .
 .
 Rm, n = [(2 * Sm – Tn)/ Tn] * 100;
4) Calculate Average REAP of Each Pairs
 AVG1 = (R1,1 + R1,2 + R1,3 ….+ R1,n) / n ;
 AVG2 = (R2,1 + R2,2 + R2,3 ….+ R2,n) / n ;
 AVG3 = (R3,1 + R3,2 + R3,3 ….+ R3,n) / n ;
 .
 .
 .
 AVGm = (Rm,1 + Rm,2 + Rm,3 ….+ Rm,n) / n ;
5) Sort the Average REAPS in Ascending Order.
6) Apply PRA (a) to pairs sorted by Average REAP in
step (5) to find the required number of best pairs for
which Halstead Program Complexity Metrics will be
computed.
7) The pair having less estimated number of bugs
calculated in step (5) will have higher rank than
other pair having more number of estimated bugs.

Halstead Complexity Metrics

Halstead complexity measures are software
metrics introduced by Maurice Howard Halstead [56]
as part of his treatise on establishing an empirical
science of software development. Halstead makes the
observation that metrics of the software should reflect
the implementation or expression of algorithms in
different languages, but be independent of their
execution on a specific platform. These metrics are
therefore computed statically from the code.

Halstead's goal was to identify measurable
properties of software, and the relations between
them. This is similar to the identification of
measurable properties of matter (like the volume,
mass, and pressure of a gas) and the relationships
between them (such as the gas equation). Thus his
metrics are actually not just complexity metrics.
Calculation
For a given problem, Let:

 n1= the number of distinct operators
 n2= the number of distinct operands
 N1= the total number of operators
 N2= the total number of operands

From these numbers, several measures can be
calculated:

Program vocabulary: n = n1 +n2
Program length: N = N1 + N2
Calculated program length: N’ = n1 log2 n1 + n2
log2 n2
Volume: V = N log2 n
Difficulty: D = n1/2 * N2 / n2
Effort: E = D * V

The required Programming Time (T) for a
program P of effort E is defined as:
 T = E / S = [n1*N2*N *log2 n / 2*n2*S]
 where S is the Stroud number, defined as the number
of elementary discriminations performed by the
human brain per second. The S value for software
scientists is set to 18 [Hamer 1982]. The unit of
measurement of T is the second.
 In 1967, psychologist John M. Stroud
suggested that the human mind is capable of making
a limited number of mental discrimination per second
(Stroud Number), in the range of 5 to 20.
Number of delivered bugs : B = [E^(2/3) / 3000]or,
more recently, B = V / 3000 is accepted.

An Illustration

Figure.4 Report Card

Figure.5 PWT Details

[Giri, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1524-1535]

Figure.6 Pair vs Individual

Figure.7 Average Reap

 Figure.8 Operators and Operands Count

Figure.9 Pair Ranking

Experimental Analysis
Pair VS Individual

Fig 10 provides the comparison of pair
programmers and individuals. It shows that the effort
spent to develop the project can be reduced by pair
programming. Programmer Ranker Algorithm (PRA)
is used to generate pairs and the pairs generated by
PRA can significantly reduce the Project
development time and cost.

0%

20%

40%

60%

80%

100%

120%

140%

Effort Cost Time

Individuals

Pairs

Figure.10 Comparison of pair programmers and
individuals

Analysis and Discussion

Based on the above, we can conclude that
PP is very effective in the Software Development
Process and can be incorporated in the industry
environment. In this work, we proposed a model for
software development using pair programming
suitable in industry environment. We will be able to
compare Individual vs Pairs and generate efficient
pairs in context of Pair Programming. Rank will be
provided to each pair of Junior, Senior of industry.

[Giri, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1524-1535]

We can work towards quality improvement, reliable
and bug free software.

Effectiveness of Software Development
Process in Pair Programming can be achieved. We
can detect more defects, bugs and adjust
implementation strategy just when code is written.
The result shows that the PP is more effective with
respect to fastness in completion, high quality,
program size, defect identification speed and defect
removal rate, number of rework done etc.

Conclusion

The primary contribution of this study is to
provide an overview of Pair Programming and to
demonstrate the use of Programming Aptitude Test in
the aspect of pair generation or team building that
facilitates to make pair of newly hired programmers
in an industry.
 In our study, we have pointed out the use of
PAT as a measurement of productivity and to evaluate
the performance of individuals and pairs in order to
generate the correct pairs. Our study showed that
junior individuals may lack the necessary skills to
perform tasks with acceptable quality, in particular,
on more complex systems. Junior pair programmers
achieved a significant increase in correctness
compared with the individuals and achieved
approximately the same degree of correctness as
senior individuals. Software testing is often viewed
as requiring less skill than initial system development
and is thus often allocated to the more junior staff.
Our study concludes that, if juniors are assigned to
complex tasks, they should perform the tasks in pairs.
 Programmer Ranker Algorithm (PRA) will
generate pair and Rank will be provided to each pair
of Junior, Senior of industry. After providing rank the
best pair is allocated to Embedded Software project
type, Semi detached Software project type and
Organic Software project type respectively. This will
reduce the time and effort requires developing the
Embedded Software project which will eventually
reduce overall cost of software. In this work, we
proposed a model for software development using
pair programming suitable in industry environment.
The result shows that the PP is more effective with
respect to fastness in completion, high quality,
program size, defect identification speed and defect
removal rate, number of rework done etc. We can
conclude that PP is very effective in the Software
Development Process and can be incorporated in the
industry environment.

Future Work

We have applied PP in the coding phase of
software development. PP is not solely reserved to

coding phase but can be applied to other phase of the
process such as analysis and design.

 Future study on PP should extend the scope
of present study in two important ways. First our
study suggests that the benefit of Pair Programming
(PP) depends on programmer’s expertise. Still our
experimental task is relatively small and simple and
our result might be therefore present a conservative
estimates of benefits of Pair Programming. Future
experiments should ideally, include larger systems
and more complex task.

References

[1] Glenford J. Myers, “The Art of Software
Testing”. Second Edition.

[2] L.L. Constantine, Constantine on
Peopleware. Yourdon Press, 1995.

[3] B. Kent, Extreme Programming Explained:
Embrace Change. Addison-Wesley, 2000.

[4] J. Nosek, “The Case for Collaborative
Programming,” Comm. ACM, vol. 41, no. 3,
pp. 105-108, 1998.

[5] L. Williams, R.R. Kessler, W. Cunningham,
and R. Jeffries, “Strengthening the Case for
Pair Programming,” IEEE Software, vol. 17,
no. 4, pp. 19-25, July/Aug. 2000.

[6] N.V. Flor, “Side-by-Side Collaboration: A
Case Study,” Int’l J. Human-Computer
Studies, vol. 49, no. 3, pp. 201-222, 1998.

[7] L. Williams and R.R. Kessler, Pair
Programming Illuminated. Addison-Wesley,
2003.

[8] Williams, L, et., al “Strengthening the case
of pair programming” IEEE software 2000,
17(4),P.

[9] J. Nosek, “The Case for Collaborative
Programming,” Comm. ACM, vol. 41, no. 3,
pp. 105-108, 1998.

[10] G. Keefer, “Extreme Programming
Considered Harmful for Reliable Software,”
Proc. Sixth Conf. Quality Eng. in Software
Technology, pp. 129-141, 2002.

[11] L. Williams, R.R. Kessler, W. Cunningham,
and R. Jeffries, “Strengthening the Case for
Pair Programming,” IEEE Software, vol. 17,
no. 4, pp. 19-25, July/Aug. 2000.

[12] A. Parrish, R. Smith, D. Hale, and J. Hale,
“A Field Study of Developer Pairs:
Productivity Impacts and Implications,”
IEEE. Software, vol. 21, no. 5, pp. 76-79,
Sept./Oct. 2004.

[13] M. Ciolkowski and M. Schlemmer,
“Experiences with a Case Study on Pair
Programming,” Proc. First Int’l Workshop
Empirical Studies in Software Eng., 2002.

[Giri, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1524-1535]

[14] J. Nawrocki, M. Jasin˜ ski, L. Olek, and B.
Lange, “Pair Programming versus Side-by-
Side Programming,” Proc. 12th European
Conf. Software Process Improvement, pp.
28-38, Nov. 2005.

[15] K.M. Lui and K.C.C. Chan, “Software
Process Fusion: Uniting Pair Programming
and Individual Programming Processes,”
Proc. Int’l Software Process Workshop and
Int’l Workshop Software Process Simulation
and Modeling, pp. 115-123, 2006.

[16] M.M. Mu¨ ller, “Two Controlled
Experiments Concerning the Comparison of
Pair Programming to Peer Review,” J.
Systems and Software, vol. 78, no. 2, pp.
166-179, 2005.

[17] M.M. Mu¨ ller, “Are Reviews an
Alternative to Pair Programming,”
Empirical Software Eng., vol. 9, pp. 335-
351, 2004.

[18] E. Arisholm, H. Gallis, T. Dyba, and D.I.K.
Sjøberg, “Evaluating Pair Programming
with Respect to System Complexity and
Programmer Expertise,” IEEE Trans.
Software Eng., vol. 33, no. 2, pp. 65-86,
Feb. 2007.

[19] M.A. Poff, “Pair Programming to Facilitate
the Training of Newly Hired Programmers,”
master’s thesis, Florida Inst. of
Technology,2003.

[20] H. Hulkko and P. Abrahamsson, “A
Multiple Case Study on the Impact of Pair
Programming on Product Quality,” Proc.
27th Int’l Conf. Software Eng., pp. 495-504,
2005.

[21] K.M. Lui and K.C.C. Chan, “Pair
Programming Productivity: Novice-Novice
versus Expert-Expert,” Int’l J. Human
Computer Studies, vol. 64, pp. 915-925,
2006.

[22] M.M. Mu¨ ller and W.F. Tichy, “Case
Study: Extreme Programming in a
University Environment,” Proc. 23rd Int’l
Conf. Software Eng., pp. 537-544, 2001.

[23] “Timeline of Visual Basic,” Wikipedia,
http://en.wikipedia.org/, 2007.

[24] M.C. Daconta, Java for C/C+ Programmers.
Wiley, 1996.

[25] “Visual Basic: Controversy,” Wikipedia,
http://en.wikipedia. org/, 2007.

[26] D.B. Mayer and A.W. Stalnaker, “Selection
and Evaluation of Computer Personnel: The
Research History of SIG/CPR,” Proc. 23rd
ACM Nat’l Conf., pp. 657-670, 1968.

[27] W.J. MeNamara and J.L. Hughes, “A
Review of Research on the Selection of

Computer Programmers,” Personnel
Psychology, vol. 14, pp. 39-51, 1961.

[28] G.P. Hollenbeck and W.J. McNamara,
“CUCPAT and Programming Aptitude,”
Personnel Psychology, vol. 18, no. 1, pp.
101-106, 1965.

[29] A. Katz, “Prediction of Success in
Automatic Data Processing Course,”
Technical Note 126,US Army Personnel
Research Office, 1962.

[30] G.Y. Denelsky and M.G. McKee,
“Prediction of Computer Programmer
Training and Job Performance Using the
AABP Test,” Personnel Psychology, vol. 27,
no. 1, pp. 129-137, 1974.

[31] J.M. Wolfe, “A New Look at Programming
Aptitudes,” Business Automation, vol. 17,
pp. 36-45, 1970.

[32] J.M. Wolfe, “Perspectives on Testing for
Programming Aptitude,” Proc. 25th
ACM/CSC-ER Ann. Conf., pp. 268-277,
1971.

[33] T.C. Oliver and W.K. Willis, “A Study of
the Validity of the Programmer Aptitude
Test,” Educational and Psychological
Measurement, vol. 23, pp. 823-825, 1963.

[34] R. Bauer, W.A. Mehrens, and J.F.
Vinsonhaler, “Predicting Performance in a
Computer Programming Course,”
Educational and Psychological
Measurement, vol. 28, pp. 1159-1164, 1968.

[35] C.R. Bateman, “Predicting Performance in
a Basic Computer Course,” Proc. Fifth Ann.
Meeting of the Am. Inst. for Decision
Sciences, 1973.

[36] M. Tukiainen and E. Mo¨nkko¨nen,
“Programming Aptitude Testing as a
Prediction of Learning to Program,” Proc.
14th Workshop Psychology of Programming
Interest Group, pp. 45-57, 2002.

[37] J. Huoman, “Predicting Programming
Aptitude,” master’s thesis, Dept. of
Computer Science, Univ. of Joensuu, 1986.

[38] T. Lorenzen and H.L. Chang, “MasterMind:
A Predictor of Computer Programming
Aptitude,” ACM SIGCSE Bull., vol. 38, no.
2, pp. 69-71, 2006.

[39] Kim Man Lui, Keith C.C. Chan, and John
Teofil Nosek “The Effect of Pairs in
Program Design Tasks” IEEE transactions
on software engineering, VOL. 34, NO. 2,
march/april 2008

[40] R.J. Calantone and C.A. Di Benedetto,
“Performance and Time to Market:
Accelerating Cycle Time with Overlapping

[Giri, 2(6): June, 2013] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology
[1524-1535]

Stages,” IEEE Trans. Eng. Management,
vol. 47, no. 2, pp. 232-244, 2000.

[41] A.W. Lazonder, “Do Two Heads Search
Better than One? Effects of Student
Collaboration on Web Search Behaviour and
Search Outcomes,” British J. Educational
Technology, vol. 36, no. 3, pp. 465- 475,
2005.

[42] R.G. Miller, Beyond ANOVA, Basics of
Applied Statistics. John Wiley & Sons,
1986.

[43] A. Munzert, “Part IV: Computer IQ—
Program Procedure,” Test Your IQ, third ed.,
pp. 112-117, Random House, 1994.

[44] M. Snyder, Working with Microsoft
Dynamics CRM 3.0. Microsoft Press, 2006.

[45] A. Wil van der, Workflow Management:
Models, Methods, and Systems. MIT Press,
2002.

[46] T.R.G. Green, “Instructions and
Descriptions: Some Cognitive Aspects of
Programming and Similar Activities,” Proc.
Int’l Working Conf. Advanced Visual
Interfaces, pp. 21-28, 2000.

[47] D. Jackson, Software Abstractions. MIT
Press, 2006.

[48] N. Flor and E. Hutcheins, “Analyzing
Distributed Cognition in Software Teams: A
Case Study of Team Programming During
Perfective Software Maintenance,” Proc.
Fourth Ann. Workshop Empirical Studies of
Programmers, 1991.

[49] C.R. Holloman and H.W. Hendrick,
“Problem Solving in Different Sized
Groups,” Personnel Psychology, vol. 24, no.
3, pp. 489-500, 1971.

[50] J. Puncochar and P.W. Fox, “Confidence in
Individual and Group Decision Making:
When ’Two Heads’ Are Worse than One,” J.
Educational Psychology, vol. 96, pp. 582-
591, 2004.

[51] L.A. Williams, “The Collaborative Software
Process,” PhD dissertation, Univ. of Utah,
2000.

[52] I.L. Janis, Groupthink, second ed. Houghton
Mifflin, 1982.

[53] M.L. Pate, G.W. Wardlow, and D.M.
Johnson, “Effects of Thinking Aloud Pair
Problem Solving on the Troubleshooting
Performance of Undergraduate Agriculture
Students in a Power Technology Course,” J.
Agricultural Education, vol. 45, no. 4, pp. 1-
11, 2004.

[54] A. Cockburn, Crystal Clear: A Human-
Powered Methodology for Small Teams.
Addison-Wesley, 2005.

Halstead, Maurice H. (1977). Elements of Software
Science. Amsterdam: Elsevier North-Holland, Inc.
ISBN 0-444-00205-7.

